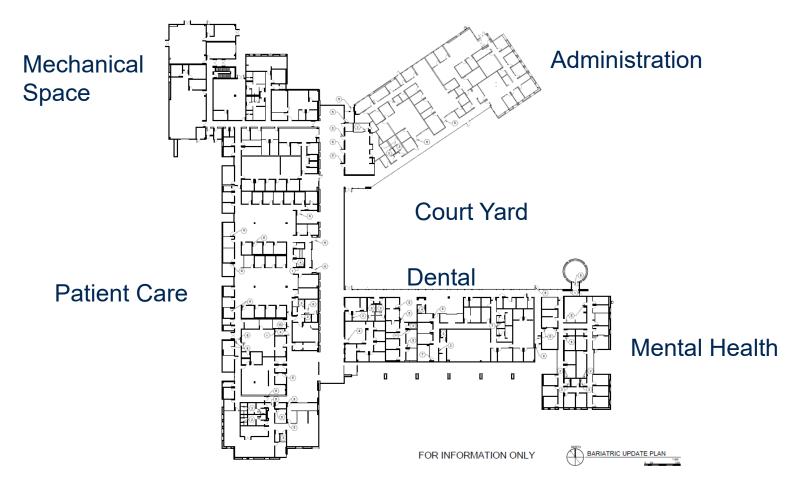


Admin. Building (Left)

- Built in 1850's
- Original building encapsulated in 1928 and 1953
- converted to housing and finely to offices in 1990.

In 1936, Works Progress Administration (WPA) funding was used to build a 50-bed hospital. (above)

Project History


- PJD/POR approval 7/2008
- Design completion 4/2010

- Construction 2/2016 to 3/2018
- Open for service 6/2018

Facility Design

- Winterhaven, CA
- 76,300 sq. ft.
- Outpatient Clinic
- \$48.5 Million
- 300 kW PV system
- Energy usage 963 MWh Half that of similar facilities
- LEED Gold Certified
- Meets Guiding Principles

Program Benefits

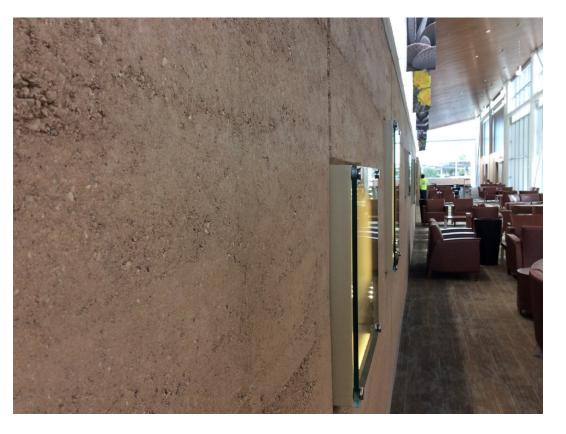
- Staff hallways separated from patient hallways
- Streamlined patient flow
- Optimally placed
 ambulance access

Photovoltaic (PV) system

- provides 466 MWh annually
- 27 percent of the electrical need

Landscaping

- Local or climate appropriate plants
- No potable water is allowed to be used
- Irrigation water is from cooling water blowdown, a non-potable water source
- Cooling water blowdown provides up to 77,000 gal.
 per month max



Intangible Benefits

- Shaded Parking
- Natural lighting
- Welcoming
 atmosphere
- Low maintenance
- Ease of way finding

Waste Management

- Rammed earth walls
 - Native soil
 - Mixed with cement
 - Used inside and outside the building
 - Reduced use of new materials
- Recyclable material sent to local recycling centers
- Diverted 82 percent of construction waste from landfills

Environmental Sustainability Profile

- Energy Star Design Score 85
- Energy Savings \$107,000 / yr.
- Water Savings 43% compared to ASHRAE
- Waste Diversion 82%
- Renewable Energy 300 kW PV system
- Annual source energy use is half of the median at 155 kBtu/ft2
- 380 metric tons of carbon emissions (CO2e) annually, about half of the median building
- Storm water is directed to earthen swales for zero storm water discharge from the site for a 100 year event

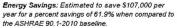
Fort Yuma Health Care Center

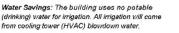
Design vs. Actual

	Energy Usage (MMBtu/yr)			Deviation
Performance Parameter	Baseline	Design	Actual	(%)
Total Energy Usage	4972	3287	8719	165%
Photovoltaic Production	0	1694	1757	-4%
Net Energy Consumption	4972	1593	<mark>6962</mark>	337%

<u>Other</u>

Waste Diversion:	82%	by mass of construction waste diverted from disposal
Storm Water:	100%	retained on-site for a 100-yr storm event
Comparison to CBECS:	23%	less energy consumed than comparable facilities across the US
Energy Usage Intensity:	114.3	kBtu/SF/yr


Primary Issues to Resolve


- Lighting Control System Issues (many lights are on 24 hours/day in a 40 hour/week clinic),
- ¼ of the building is overcooled much of the year in order to meet the strict requirements of a medication room (RTU has to meet a cooler SAT, resulting in re-heating requirements for the rest of the spaces)
- Economizers are not performing as intended, resulting in much lower efficiency of operations

IHS Ft. Yuma Healthcare Center: Sustainability Project Profile

Building owner: Indian Health Services Location: Winterhaven, California Climate zone: 2B-Dry (Desert/Xeric Shrubland) Project size: 72,000 square feet Elevation: 207 feet above sea level Completion date: March 2018

Waste Savings: Project diverted 82% of all construction waste (by weight) from landfills, by separating construction waste, and shipping all recyclable material to local recycling centers. This is equivalent to 248 tons or 31 eight ton truck loads diverted to the landfill.

Susteinability Feature: Newly installed photovolitic system generating 300 kW, with an annual production of 466,665 kWH/year. This is equivalent to the sum of greenhouse gas emissions from 67 homes' energy use for one year in this area.

	• Facts Health Care Center Iven, CA	
LEED NC : Certificati	2.2 on awarded Month/Yea	¥
Gold		39*
🙆 Inno	vation & Design	2/5
😳 Sustainable Sites		9/14
O Wate	r Efficiency	4/5
O Ener	gy & Atmosphere	13 / 17
🙆 Mate	rials & Resources	2/13
💿 Inda	or Emironmental Quality	9/15
'Outofap	passible 69 points	
Denfied:	26-32 pm. 33-38 pm.	
Boirt Platinum:	32-38 pts. 39 53 pts. 53-58 pts.	

"Measure in this stell property is performing which is in order properties in the U.S.

By using a supplemental energy supply and deploying water reductions, the facility is better able to respond to future climate impacts in terms of intensifying droughts, occasional large floods, rising temperatures, and competition with agricultural irrigation demand.

